LagInsk

-2

Unleashing the Power of Statistics on Stock Data: A Comprehensive Approach to
Classification using Naive Bayes, KNN, Logistic Regression, and SVM

KNN for HiLo CF risk by Shuvam Bhowmick SVM Risk grid by Shuvam Bhowmick

4 o 0 > 4 3 2 A 0 1 2
Lag?risk R
shuvam’s radial plot with training data Shuvam's logistic regression classification plot for stock returns
o
1 -
™
K .

Shuvam Bhowmick

Table of Contents

1. CFindustries Stock overview and data collection on Excel (pg. 3 and 4)

2. SVM method on stock data (pg. 5-11)

3. Analysis of Tuning Parameter, C (pg. 12-18)

4. SVM classification plot (pg.19-23)

5. Classification methodology (pg.24)

6. KNN classification (pg. 25-28)

7. Logistical Regression (pg. 29-32)

8. Naive Bayes (pg. 33-35)

9. Forecast table for Return and Risk data with all methodologies (pg.36-37)

9. Classification methodology conclusions (pg. 38)

10. Appendix with ISLR SVM() textbook example(pg. 39-52)

1. In this paper, I will be working with stock data of the manufacturing company CFindustries
who are well known for its innovative fertilization products. Interestingly, this company spent
most of its life being a non-stock company, working closely with regional agricultural supply
cooperatives. The original name of CFindustries was the “Central Farmers Fertilizer Company*”
founded in 1946. CFindustries become a stock company in 2002 after 56 years of trade. I will
now explain why we took two different transformations of the price return and risk data.

First transformation : For the return stock data, | worked with the percentage change of the
adjusted daily closing price. By doing this, we can see how the return percentage changes over
time between two consecutive adjusted closing prices. This gives us a clearer understanding of
what the average return might be since we can see the average percent change of the stock. From
the picture below, you can see how Column “I”” contains a formula that subtracts the adjusted
close of the previous day from the adjusted close of the current observation. It then multiplies the
subtracted value by 100 and divides that number by the previous adjusted close price.

Second transformation: For the risk stock data, I used the daily price range (High — Low)
transformation. This gives us an idea of how the stock moves daily. In other words, we compute
the daily volatility of the stock to understand the risk. It is useful to take the logarithm of the
range because logs respond well to the problem of skewness that can come about from large
daily swings. The logs can reduce some of the larger variation that comes with large daily
swings. By using the log of the percent change of the stock, we account for outliers or unusual
price movements. From the picture below, you can see how column “J” contains the formula
High (Column C) — Low (Column D) to get the daily range. We then took the logarithm (excel
using ‘In’) of the daily range values in column J.

il Date Open High Low Close Adj Close Volume Cfret "=100%(F3-F2)/F2" Range "=C2-D2" Cfrisk "=Ln{12)"

2 1/3/2006 3.05 3.08 3.02 3.06 2.270684 2272500 0.06 -2.813410717
3 1/4/2006 3.06 3.14 3.06 3.112 2.30927 2567500 1.699311749 0.08 -2.525728644
4 1/5/2006 3.12 3.248 3.114 3.23 2.396832 5217500 3.791761033 0.134 -2.009915479
5 1/6/2006 3.22 3.22 3.16 3.204 2.37754 5087000 -0.804895796 0.06 -2.813410717
6 1/9/2006 3.204 3.32 3.204 3.28 2.433935 3454500 2.371989535 0.116 -2.154165088
7 1/10/2006 3.246 3.296 3.224 3.29 2.441357 2359500 0.3049383 0.072 -2.63108916
8 1/11/2006 3.29 3.29 3.24 3.258 2417611 2560500 -0.972655781 0.05 -2.995732274
9 1/12/2006 3.25 3.316 3.23 3.26 2419095 2813000 0.061382911 0.086 -2.453407983
i 1/13/2006 3.262 3.284 3.254 3.274 2.429484 1345000 0.429458124 0.03 -3.506557897

il 1/17/2006 3.244 3.268 3.172 3.256 2.416127 2442500 -0.549787527 0.096 -2.343407088
=N 1/18/2006 3.24 3.318 3.21 3.316 2.460649 1538500 1.842701149 0.108 -2.225624052
el 1/19/2006 3.32 3.322 3.268 3.306 2.45323 1172500 -0.301505822 0.054 -2.918771232
£l 1/20/2006 3.312 3.318 3.178 3.19 2.367152 1943500 -3.508761918 0.14 -1.966112856

El 1/23/20006 3.194 3.276 3.192 3.246 2.408706 1171000 1.755442827 0.084 -2.47693848
i 1/24/2006 3.25 3.324 3.24 3.298 2.447254 3657000 1.602021999 0.084 -2.476933848
ikl 1/25/2006 3.3 3.308 3.22 3.26 2.419095 11327500 -1.152352243 0.028 -2.430418465

) 1/26/2006 3.266 3.366 3.266 3.352 2.487363 2149500 2.822047088 0.1 -2.302585093

el 1/27/2006 3.35 3.42 3.342 3.404 2.52595 1289500 1.551321621 0.078 -2.551046452
L) 1/30/2006 34 3.45 3.354 3.38 2.508142 1613500 -0.705002078 0.096 -2.343407088
21 1/31/2006 3.38 3.424 3.37 3.402 2.524467 2094500 0.650880213 0.054 -2.918771232
22 2/1/2006 3.384 3.384 3.35 3.356 2.490332 2454500 -1.352166616 0.034 -3.381394754
23 2/2/2006 3.344 3.356 3.266 3.3 2448777 7376500 -1.668653015 0.09 -2.407945609
24 2/3/2006 3.296 3.38 3.276 3.376 2.505172 2558000 2.302986348 0.104 -2.26336438
25 2/6/2006 3.376 3.418 3.37 3.416 2.534856 2713000 1.184908661 0.048 -3.036554268
26 2/7/2006 3.418 3.418 3.376 3.388 2.514077 2793000 -0.819730983 0.042 -3.170085661
27 2/8/2006 3.386 3.462 3.37 3.448 2.5586 2350000 1.7705948145 0.092 -2.385966702
28 2/9/2006 3.446 3.558 3.44 3.5 2.597187 1597500 1.508129446 0.118 -2.137070655

t BEFORE AFTER i

1 “History.” CF Industries. Accessed December 15, 2022. https://www.cfindustries.com/who-we-are/history

https://www.cfindustries.com/who-we-are/history

| created lagged stock data to show the return and risk data in multiple columns. Before | show
that process, | will mention that | started by standardizing the return and risk data. For this, we
subtract the mean of the entire return/risk column from each observation and divided it by the
standard deviation.

\ C)
Date Cfret Cfrisk CFret(standardized) Cfrisk(standardized) Cfret Cfrisk

1/4/2006 1.699311749 -2.525728644 0.53323379 -2.855734003 SamAvg 0.133522 -0.08604
El 1/5/2006 3.791761033 -2.009913479 1.245822671 -2.251959076 Samstd 2.936405 0.854314
4 1/6/2006 -0.804895796 -2.813410717 -0.319580406 -3.192474578
5] 1/9/2006 2.371989535 -2.154165088 0.762315907 -2.420807611
l 1/10/2006 0.3049383 -2.63108916 0.0583763%4 -2.979061676
ll 1/11/2006 -0.972655781 -2.995732274 -0.376711493 -3.40588748

1/12/2006 0.061382911 2.453407333 0.024567008 -2.771080479

ormula in column E : (BZ -L2)/ L3
Formula in column F : (C2 - M2) / M3

After the standardization, | created the lagged stock data by making three copies of each column
(Cfrisk and Cfret). We then created time-lagged versions of these columns by deleting the first
entry of the second column and the first two entries of the third column. The first column
remained unchanged. | renamed the first two columns as lag2 and lagl.

Date Lag2ret Laglret Cfret Lag2risk Laglrisk Cfrisk

Pl 1/4/2006 0.53323379 1.245822671 -0.319580406 -2.855734003 -2.251955076 -3.192474578 e copied over the CFret columns to get three copies of It.
3 1/5/2006 1.245822671 -0.319580406 0.762315907 -2.251959076 -3.192474578 -2.420807611 Then we deleted the first entry and shifted cells upward. We
4 1/6/2006 -0.319580406 0.762315907 0.058376394 -3.192474578 -2.420807611 -2.979061676 deleted two entries and shifted cells upward for the last

5 1/9/2006 0.762315907 0.058376394 -0.376711493 -2.420807611 -2.979061676 -3.40588748 CFretcolumn.

[l 1/10/2006 0.058376394 -0.376711493 -0.024567008 -2.975061676 -3.40588748 -2.771080479

[1/11/2006 -0.376711493 -0.024567008 0.100781934 -3.40588748 -2.771080479 -4.003824338

8 1/12/2006 -0.024567008 0.100781934 -0.232702642 -2.771080479 -4.003824338 -2.642321101

W 1/13/2006 0.100781934 -0.232702642 0.582065412 -4.003824338 -2.642321101 -2.504452491

b 1/17/2006 -0.232702642 0.582065412 -0.148149681 -2.642321101 -2.504452491 -3.315802251

1/18/2006 0.582065412 -0.148149681 -1.240388835 -2.504452491 -3.315802251 -2.200686781
il 1/19/2006 -0.148149681 -1.240388835 0.55234937 -3.315802251 -2.200686781 -2.798623638

Next, we delete the third column labeled Cfret and Cfrisk because those columns hold the most
current return/risk values. The purpose of the lagged stock data is to use day-before-yesterday
and yesterday return/risk values to determine the forecast of “today’s”(deleted column which
will be used for testing) return. To make things a bit simpler, we will use the if function that will
convert the last column into a categorical factor of being either high or low. With this, we can
use the previous two days of values to determine whether “todays” return will be either high or
low.

Date Lag2ret Laglret Cfret Date Lag2risk Laglrisk Cfrisk

2 1/4/2006 0.53323379 1.245822671 LoRet 1/4/2006 -2.855734003 -2.251959076 LoRisk
3 1/5/2006 1.245822671 -0.319580406 HiRet 1/5/2006 -2.251959076 -3.192474578 LoRisk
4 1/6/2006 -0.319580406 0.762315907 HiRet 1/6/2006 -3.192474578 -2.420807611 LoRisk
5 1/9/2006 0.762315907 0.058376394 LoRet 1/9/2006 -2.420807611 -2.979061676 LoRisk
6 1/10/2006 0.058376394 -0.376711493 LoRet 1/10/2006 -2.979061676 -3.40588748 LoRisk
T 1/11/2006 -0.376711493 -0.024567008 HiRet 1/11/2006 -3.40588748 -2.771080479 LoRisk
8 1/12/2006 -0.024567008 0.100781934 LoRet 1/12/2006 -2.771080479 -4.003824338 LoRisk
g 1/13/2006 0.100781934 -0.232702642 HiRet 1/13/2006 -4.003824338 -2.642321101 LoRisk
Cfret Column Function : R RO eal **Same function for Cfrisk just different column

2. For part 2, | will draw a random sample of size n=300 without replacement from CFindustries
stock returns data set. This sample will come from 300 randomly selected observations from a
total of 4246 trading days. In other words, 300 rows of the return dataset will be pulled randomly
from 4246 rows. | will do the same procedure for the CFindustries risk data set.

CFstock = read.csv ("CFriskF.csv")

CFstockRisk = read.csv ("CFriskF.csv")
CFstockBet = read.csv ("CFretF.csv")
CFstockRet300 = CFstockBet [sample (424&, 300),
CFztockRi=sk300 = CFstockRisk([=zample (4246, 300),

Now that we have our subsets of risk and return data, | can go through the steps of SVM while
explaining the methods being used for classification (reference appendix for ISLM textbook
steps)

We will be working with two classes : High and Low returns. We will be classifying the lagged
stock data. As I mentioned before, the purpose of the lagged stock data is to use day-before-
yesterday and yesterday return values for predicting the forecast of “today’s” return. With the
SVM method, we will train the model using the lagged training data and test the accuracy of
predictions using the test data.

Create a variable than contains 300 sample observations from the stock return dataset of 4246
observations. | will plot the classification and see if it is linearly separable.

> head (CFstockRisk300N[,-1])
Lag2risk Laglrisk Cfrisk
256 -3.116e5%303 -2.1e7711% LoRisk
3677 0.5908217 -0.2517479 LoRisk
1445 0,7730172 1.0766706 HiRisk
3%e0 0.7490451 ©0.4167801 HiRisk
1189 -0,25459143 -0.5531735 LoRisk
2706 -0.577985%4 -0.57798%4 HiRisk

> head (CFstockRet=s300[,-1])
LagZret Laglret Cfret
281 -1.33e00%51 0,55070105 HiRet
4001 0.07501293 -0.09766977 LoRet
919 -0.26368474 -0.0703466% LoRet
3241 1.14945322 0.30523525 LoRet
2777 -0.56848421 -1.13788632 LoRet
1471 0.96224554 -0.1431460&6 LoRet

CFstockRets300 and CFstockRisk300N is the sample of 300 observations from the excel data
put into a data frame. I then used only the lagged stock data columns and created another matrix
called H. 1 will use this second matrix to show the classification plot on the next page.

H = (matrix({as.numeric|((CFstockRet=2300[,2:3])), ncol = 2 })

olot (H,col=ifel=se (H[,1]<0, "red™ , "blue™))
R (o=@] =]
Stock returns classification
o -
o
o Lo
o~ -
=)
o]
o]
= O - R
— =]
T
o o]
o4 o
o o
o o]
o]
q. _ s
=)
T T T T T T T
3 2 1 0 1 2 3
HL1]

The blue points represent high-return data points or lagged stock returns that have returns greater
than zero. The red points represent low-return data points. It looks like this plot is linearly
separable. We must test whether a linear boundary or a non-linear boundary will produce better
separations of data. First, let’s add some linear support vector classifiers and test the
classification.

numeric{matrix (H[,1]>0))
data.frame (H=H, F=as.factor(F))
data=dat,

t
svmfit = svm(F~., cost=10,kernel =
3

Shuvam Bhowmick’s Stock SVM plot C = 10

SVM classification plot

H.1

Hz2

svmfitSindex
[1] 11 26 53 54 74 76 103 1le6 167 15
[19] 221 229 230 241 27 274 276

LINEAR SEPERATION

» sumnary (svmfit)
Call:

avm(formula = F ~ ,, data = dat, cost = 10, kernel = "linear", scale = FALSE)

Parameters:
SWi-Type: C-classification
Wi-Rernel: linear
cost: 10
Wumber of Support Vectors: 36

[1818)
Humber of Classes: 2

Levels:
01

65 135

5]
(8]
]
[35]
-]
%]
]
5]

-

The points marked as “X” are support vectors and the black/red circles are stock observations.
We have a large cost parameter of 10 with many support vectors. Is this optimal? We will answer
that question in part 3. For now, we will look at the classification plots for another kernel

HA

Shuvam Bhowmick’s Stock SVM plot C =10

dat = data.frame (H=H,
plot (svmfit, dat)

F = as.numeric(matrix(H[,1]>0))

SVM classification plot

F=as.factor(F))

-4 2 0 2

svmfit = svm(F~., data=dat, cost=10,kernel = "radialf', =scale= FALSE)

RADIAL SEPERATION

> summary(svmiit

Call:
gvm(formmla = F » ., data = dat, cost = 10, kernel = "radial", scale = FALSE

Parameters:
SVM-Type: C-classification
SVM-Rernel: radial
cost: 10

Number of Support Vectors: 52

[26 26

Number of Classes: 2

Levels:
01

The svm() function is using the radial kernel.
The number of support vector machines has
increased from before even though the cost
parameter is still C=10. The radial kernel has
increased the width of the margin.

Now, that we have created SVM plots for the stock return data, we will know do the same for the
stock risk data. I will begin by setting up my matrix the same way | did for the return data (using

cbind()).

data.matrix (CFetockRi=sk300M)

RT = [(matrix(as.numeric| (MatrixRISK[,2:3])), ncol=2)

F;:t[i:,c:; = ifelse(RI[,1]<0, "green", "orange™))

I will now plot the data where the red points represent high risk and the green points represent
low risk. Yesterday’s percentage change of risk is on the y-axis, while the day-before yesterday’s
percentage change is on the x-axis.

Risk Classification plot

RI

RI[,1]

This plot looks very similar to the return data plot. However, there might be a sharper linear
separation here.

RI1

numericimatrix (RI[,1]:

OFP = as =00
datBRisk = data.frame (RI =RI , OF = as.factor (OF))
svmfit = svm (0P~., data=datBRisk,kernel="linear"™, cost=10,scale=FALSE)

plot (svmfit,datRisk)

The OP variable is creating the classification for the svm function. We are using a linear kernel
with a cost of 10 which should give us a smaller width margin.

Shuvam Bhowmick’s Stock Risk SVM plot C = 10 LINEAR SEPERATION

> gummary (svmfit)

SVM classification plot

Calls
gvm(formnla = 0P ~ ., data = datRisk, kernel = "linear", cost = 10, scale = FALSE)

Parameters:
— SWM-Type: C-classification
SWM-Eernel: linear
cost: 10

Number of Support Vectors: 32

(1616)

lumber of Classes: 2

Levels:
01

There are 32 support vector classifiers with a decent sized margin. It looks like there is a good
spread of support vectors on both sides of the classification boundary(bottom yellow represents
low risk, and red represents high risk). There are a few high-risk points leaning towards the low-
risk side. Let’s look at a radial kernel and see if that helps reduce the classification errors.

10

RI1

» gummary|smEit)

SVM classification plot

Call:

Parameters:
JWM-Type: C-classification
SVH-Rernel: radial
cost: 10

IN‘JIrher of Suppart Vectors: 38

- o (201

Humber of Clasges: 2

Levels
RI.2 01

There was an increase in support vectors. Changing from a linear kernel to a non-linear kernel

gvi(formola = OF ~ ., data = datRisk, kernel = "radial”, cost = 10, scale = FALSE)

did not change the classification. It looks like the radial kernel is a bit more conservative in terms

of the space used for the red classification (high risk). This may suggest that the probability of
risk being classified as high is smaller than it is for low.

In general, the definition of high risk can depend on how risk adverse a person is. However,
everyone can agree if a return is high or not by comparing previous returns. Using the svm
method, it also looks like the linear kernel performs just as well as the radial kernel. Using a
linear or non-linear decision boundary does not make a difference in terms of how correct the
classifications are. However, when we used the radial (non-linear) decision boundary, the
program used more support vectors which maximizes the margin.

11

3.

The “cost parameter?” in SVM maximizes the trade-off between achieving a low error rate on the
training data and allowing the model to be more flexible to generalize new data. A high-cost
value will result in a model with low error on the training data but wouldn’t generalize well to
new data. A low-cost value will result in a more flexible model that may have a higher error on
the training data but better generalization of new data. The cost parameter is determined through
cross-validation, where the model is trained on a subset of data and tested on the remaining data.

Let’s test the cost parameter by using the built-in tune() function (available in the library e1071)
to perform cross-validation. By default, the tune() function performs ten-fold cross-validation
using a range of cost parameters. This will set us up for testing which cost parameter works best.

» ummary(tune.out)

Parameter tuning of ‘svm’:

o I LR T SR PR Ry

sampling method: 10-fold cross validation

best parameters:

cost

100
best performance: 0.01

Detailed performance results:
cost error dispersion
1e-03 0,43000000 0.15432049
le-02 0.15333333 0.0918936¢
le-01 0.05000000 0.04779070
le+00 0.01333333 0.0233068¢
Se+00 0,01333333 0.0233068¢
le+01 0,01333333 0.0233068¢
le+02 0.01000000 0.02249829

Based on the tune.out() function, the cost parameter that performs the best is Cost=100. This
allows for fewer errors on training data but may not work well with classifying new data.

2 Tumminello, Aurora. “Statistical Models Part Il.” Chapter 11 Support Vector Machines.
https://bookdown.org/aurora_tumminello/statistics lab/support-vector-machines.html

12

https://bookdown.org/aurora_tumminello/statistics_lab/support-vector-machines.html

The cost parameter of 100 gives us the lowest cross-validation error rate so we will store this
model for later use.

> bestmod = tune.outfhest.model
> summary (bestmod)

Call:
bkest.tune (method = svm, train.x = F ~ ., data = dat, ranges = list(cost = ¢(0.001, 0.01, 0.1,
1, 5, 10, 100}), kernel = "linear")

Paramsters:
SVM-Type: C-classification
SVM-Eernel: linear
cost: 100

Humker of Support Vectors: 15

(5 7)
Humker of Classes: 2
Levels:

a1

> RETPREDICT = predict (bestmod, dat)

> table (predict = RETPREDICT, truth = datiF)

truth
predict 0 1

0 142 0

1 0 158

For the classification of the return data, there are no errors. Let’s see if the same holds for the
risk data set.

., data=datRisk, kernel="linear", ranges = list(cost=c(0.001, ©.01, 0.1, 1,5,10,100)))

Parameter tuning of ‘svm':
- sampling method: 10-fold cross wvalidation
- best parameters:
cost
100

— best performance: 0.0066E6EE7

— Detailed performance results:

I cost error dispersion
1l 1=-03 0.413333333 0.11243654
2 1le-02 0.153333333 0.04216370
3 le-01 0.053333333 0.07062333
4 1le+00 0.013333333 0.02330686
5 5e+00 0.010000000 0.01610153
€ le+01 0.013333333 0.01721326
7 1le402 0.006666667 0.01405457

13

The tune() function says that the best cost parameter function to use is 100 based on the given
range (0.001, 0.01,1,5,10,100)). Let’s store that model with the best cost function and determine
its performance on the training data set.

> hestmodRisk = tune.outRiskibest.model
» Rizkpred = predict (bestmodBRizk, datRisk)
> table(predict = Riszskpred, truth = datRiski0P)
truth
predict 0 1
0 140 2
1 0 158

There are 2 classification errors for the risk training data, while the return data had 0. The model
predicted low risk(0) when 2 observations were actually high risk. This could mean that it is
harder to classify the risk levels of the stock using the SVM() method then it is to classify return
levels. Since 298 out of 300 risk points were classified correctly, we can neglect the
classification errors. However, if we worked with a bigger sample size, the classification errors
will be larger in most cases.

After observing the classification performance, let us now look at how the model performs at
predicting new data. | will take a brand new sample of 300 observations of risk and return data
points from the 4246 observations. | will then split it in half. 150 observations will be used to
train the model for prediction of the second half.

First, let’s create the training and testing data set.

» trainingR CFstockRet3005ample[intrain,]
> testingR = CFstockRet300Sample[-intrain,]
> anyNL (CFstockRet3005ample)

[1] FALSE

> dim({trainingR)

[1] 150 4

> dim(testingR)

[1] 150 4

> intrain = createlataPartition(y=CFstockRet3005ampleilfret, p=0.5, list = FALSE)

trainingR[["Cfret™]] = factor(trainingR[["Cfret™]])
I |
Cfret
LoRet There are 150 observations for each of the subsets. Cfret refers to what we will be

HiRet predicting and it must be factorized.
HiRet

LoRet

LoRet
HiRat

14

tretrl = trainControl (method = "repeatedev™, number = 10, repeats = 3)

svm_Linear = train(Cfret~. , data = trainingR, method = "svmlinear", trControl = trctrl, preProcess = c("center", "scale"), tunelength = 10}

Now we control the training process by setting the cross-validation attributes. We will iterate the

cross-validation method 10 times and repeat the entire process 3 times. A 10-fold Cross-
validation® repeated 3 times refers to dividing the training data into 10 parts and performing
cross-validation 3 times on each of those partitions. This can be useful for model selection and
evaluation because it allows the model performance to be estimated multiple times, which can
help to reduce the variability of the estimate and provide a more reliable assessment of model
performance. Let’s see how the model performed when using the testing set.

- test pred Bet = predict(svm Linear, newdata = testingR)
> confusionMatrix(table (test_pred Ret, testingR3ICfret)
Confusion Matrix and Statistics The model was able to pred|ct the
cest prea mes mimes Lomec outcomes of the testing data with an
e S accuracy of 50%. This is quite low so let’s

adjust the tuning parameter.

Accuracy @ 0.5

95% CI : (0.4174, 0.5826)
Ho Information Rate : 0O.50&87
P—-Value [Acc > NIR] : 0.59&8
Kappa : —-0.0018
Mcnemar's Test P-Value : 0.3556
Sensitivity : 0.4324
Specificity : 0.5658
Fos Pred Valus : 0.4923
Neg Pred WValus : 0.5058%9
Prevalence : 0.4933
Detection Rate : 0.Z2133
Detection Prevalence : 0.4333
Balanced RAccuracy : 0.4991

"Fositive' Class : HiRet

3 Kuhn, Max. “The Caret Package.” 5 Model Training and Tuning, March 27, 2019.
https://topepo.github.io/caret/model-training-and-tuning.html

15

https://topepo.github.io/caret/model-training-and-tuning.html

grid = expand.grid(C = <(0,0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25,1.5,1.75,2,5))

g Linear Grid = train

Cfrate,, data = trainingR, rethod = "svilinear® tefontrol = treorl, preProcess = o("center", "acale"), tunebrid = grid, tunelength = 10)

> svm_Linear Grid
Support Vector Machines with Linear EKermnel

150 samples
3 predictorxr
2 classes: '"HiRet', 'LoRer'

Pre-processing: centered (3), scaled (3)

Resampling: Cross-Validated (10 fold, repeated 3 times)
Sunmary of sample sizes: 135, 134, 134, 134, 135, 135,
Fesampling results across tuning parameters:

c Acouracy Kappa

0.00 Nal Nal
0.01 ©O.5066667 0.00000000
0.05 0.4826786 -0.036399&69
0.10 ©0.466%9048 -0.07027220
0.25 ©0.47047&62 -0.06327388
0.50 ©0.4727183 -0.05845403
0.75 ©0.4822421 -0.03940641
1.00 ©0.4822421 -0.035406841
1.25 ©0.4822421 -0.03540641
1.50 ©0.4822421 -0.03940641
1.75 ©0.4822421 -0.039%40641
2.00 ©0.4822421 -0.035406841
5.00 ©0.4820833 -0.0400&&600

Locuracy was used to select the optimal model using the largest walue.
The final walus used for the model was C = 0.01.

The final C parameter for the model was chosen to be C = 0.01 which gives us an accuracy of
51%. The accuracy did not improve much after tuning the parameter C.

> confusionMatrix(takble (test_pred grid, testingRICLret))
Confuasion Matrix and Statcistics

tcestc pred grid HiRet LoRetc

HiRet Lo} Lol
LoRetT T3 TE
Docuracy = 0.50&87
95% CI = (0.4239, 0.5892)
Ho Informatiom Rate :: O.50&867
P—Valus [Bncc > HIRI] : D.5327
Happa - O

Monmemar"s Test P—WValue @ <Ze—1c

Sensiciwvitcy @ O.0000
Specificitcy @0 1L.000O0

Fos Pred WValuas = HMall

MNeg Pred Value :@: O0.50&87
FPrevalence 1 0.494933

Decectiomn Rate 1 O.0000
Detection Frevalence 1 O.0000
Balanced Accuracy = 0O.5000
"Positiwve" Class :: HiRet

16

Since the code is the same for the risk data set, I will just show the accuracy and tuning of the
risk svm model.

3005am§CErisk, p=0.5, list=FALSE

"svmLinear", trControl = trctrlRisk, preProcess = c("center", "scale"), tunelength = 10
Confusion Matrix and Statistics

test_pred Risk HiRisk LoRisk
HiRisk 67 18
LoRisk 17 48

Accuracy : 0.7667
95% CI : (0.6907, 0.8318
No Information Rate : 0.56
P-Value [Acc > NIR] : 1.106e-07

Kappa : 0.5257
Mcnemar's Test P-Value : 1

Sensitivity : 0.7976
Specificity : 0.7273

Pos Pred Value : 0.7882

NWeg Pred Value : 0.7385
Prevalence : 0.5600
Detection Rate : 0.44€7
Detection Prevalence : 0.5667
Balanced Accuracy : 0.7624

'Positive' Class : HiRisk

The model was 76% accurate at predicting risk on the testing data after training. Let’s adjust the
C parameter to try and increase the accuracy of the model.

> svm_Linear Grid Risk
Support Vector Machines with Linear Kernel

150 samples
2 predictor
2 classes: '"HiRisk', 'LoRisk'
Pre-processing: centered (2}, scaled (2)
Resampling: Cross-Validated (10 fold, repesated 3 times)
Summary of sample sizes: 134, 135, 136, 135, 135, 134,
Resampling results across tuning parameters:

C Bocuracy Kappa

0.00000 Nal Hal
0.00001 ©.560138% 0.0000000
0.00100 ©0.560138% 0.0000000
0.01000 0©.660198 0.2463016
0.05000 ©0.7027976 0.3707378
0.10000 ©0.7023413 0.3713248
0.25000 ©.7058929 0.3898197
0.50000 0O.70€1508 0.3934660
Q.75000 0©.7017063 0.3859578
1.00000 0©0.69%0278 0.3823800
1.25000 ©0.6923413 0.36946867
1.50000 0©0.6945635 0.3747150
1.75000 ©.6945635 0.37471:50
2.00000 0.699%91667 0.3837603
5.00000 0©.7056944 0,3978505

Accuracy was used to select the optimal model using the largest value.
The final walue used for the model was C = 0.5.

The final value for the model was C = 0.5 . This is where we achieve the highest accuracy.

17

Let’s see how the prediction table looks using C value of 0.5
e g e e cimar e aamsan
> test_pred grid risk = predict(svm Linear Grid Risk, newdata = testingRisk)
> confusionMatrix(tabkle (test _pred grid risk,testingRiskSCfrisk))
Confusion Matrix and Statistics

test pred grid risk HiRisk LoRisk
HiRisk &7 18
LoRisk 17 45

Locuracy @ 0.7667
95% CI : (0.69%07, 0.8318)
Ho Imformation Rate : 0.5&
P-Value [&Acc > NIR] : 1.106e-07

Kappa : 0.53257

Mcnemar's Test P-Value : 1
Sensitivity 0.797¢6
Specificity 0.7273

Pos Pred Value 0.7882

Heg Pred Value 0.7385
Frevalence 0.5600

Detection Rate 0.4467
Detection Prevalence 0.5667
Balanced Accuracy 0.7624
'Positive" Class : HiRisk

The best accuracy of 76% was achieved when we used C=0.5257. Overall, the model was able to
predict the classification of new data with higher accuracy for risk than return. This is quite odd
since we used a higher Cost parameter value for the risk model, yet it performed better with the
new data than the return model. In general, | believe it is easier for the model to predict the risk
level of the stock compared to the previous two days than it is to predict the returns based on
previous two days’ returns.

18

4. 1 will now create step-by-step classification plot for the SVM methodology without using the
SVM software generated plots like before.

n=300 return data set

We will start off with just plotting the points,

H = mactrix(as.numeric((MatrixRET[,2:3])), ncol=2))

L = ifelse{H[,1]>0 , "blue™ , "red")

nlot (H, col = L)

H[.2]

19

We will now need to implement a grid.

¥xgrid = expand.grid(H.1 = H[,1l] , H.2 = H[,2)

ygrid = predict (zvmfit, xgrid)
plot (xgrid, col=as.numeric(ygrid), pch=20, cex=10)

SVM grid by Shuvam Bhowmick

H.2

H.1

20

zvmfit = svm(F~., data=dat, coszt=10,kernel = "linear™, scale= FALSE)

L = ifelse(H[,1]>0 , "black™ , "grevy™)
plot (xgrid, col=as.numeric(ygrid), pch=20, cex=10, main="5VM grid by Shuvam Bhowmick"™)
points(H, col = L, pch=20)

SVM grid by Shuvam Bhowmick

H.2

H.1

The grey points residing in the black part of the graph represents low return data based on the x
and y-axis. The black points on the red side represent high return data. It makes sense that the
predict() function in the code would pick a linear boundary. However, the boundary seems to
spike inward and outward instead of being a straight line.

21

n=300 risk data set

We will start off with just plotting the points of the matrix while using the condition of the first
column being less than 1. This indicates orange points

=7

E = (matrix({as.numeric((MatrixRisk[,2:3])) , ,ncol=2))

plot (K, col = ifel=se(EK[,1l] < 0 , "orange™, "green™))
]

Shuvam bhowmick Risk plot

Green points represent low risk, while the red points represent high risk. We will now create an
SVM classification plot using a somewhat linear boundary.

22

svmfit = svm (CPH~., data=datRiskN, kernel = "linear", cost=1l0, =scale=FALSE)

Xgrid = expand.grid(R.1 = R[,1l], R.2 = R[,2])

ygrid = predict (svmfit, =grid)

plot (®grid,col=as.numeric (ygrid) ,pch=20, cex=10)

plot (®grid,col=as.numeric (vgrid) ,pch=20, cex=10, main="5VM Risk grid by Shuvam Bhowmick™)
L . -

GL = ifelse|(R[,2]>0&R[,1]>0, "grey", "purple™)

points (R, col=GL, pch=20)

SVM Risk grid by Shuvam Bhowmick

R2
-2 -1

-3

R

As you can see, there are more classification errors for the risk plot than the return plot when we
use a linear boundary. But overall, most of the purple points (or low risk points) are on the
correct side of the classification while most the grey points are on the correct side of
classification as well.

23

5. In the final part of this project, | will prepare a comparative study of knn, naive Bayes, logistic
regression ,and SVM using my stock and risk observations. Before | do that, | want to compare
these methodologies and explain their significance.

KNN is a non-parametric method that uses a distance metric to find the “k-nearest neighbors*’of
a point and predicts the labeling of the neighbors. The method is sensitive to the choice of k and
distance metric. Naive Bayes is a probabilistic method that makes predictions based on the Bayes
theorem, which states that the probability of the label and the likelihood of the features given in
the label. This method is efficient, but it makes an unrealistic assumption that the features are
independent of each other. Logistic regression is a parametric method that uses a logistic
function to model the relationship between the dependent variable and the independent variables.
One downfall of the logistic regression method is that it can only model binary classification
problems and assumes a linear relationship between the dependent and independent variables.
SVM is a non-parametric method that uses a kernel function to map the data into a higher-
dimensional space, where it finds the hyperplane that maximally separates the two classes. This
method is effective in high dimensional spaces and can handle non-linear boundaries but can be
sensitive to the cost parameter. Each of these methods have their advantages and disadvantages
so the specific characteristic of the data and requirements of the task will determine which ones
work best.

Knn Method

First, I will prepare my stock return and risk data so | can draw predictions and display a
classification plot.

> CFH = CFstockRet300[,-1]
> table (CFH[, 3])

HiRisk LoRisk

165 135
> head (CFH)
Lag2risk Laglrisk Cfrisk
3788 0.443286455 0.2944485 HiRisk

536 0.352502224 0.3804544 HiRisk
286 0.380484360 0.3043245 HiRisk
3747 -0.145944615 0.5356315 HiRisk
29 -2.381124818 -2.5%4537T7 LoRisk
3662 -0.009%685664 0.4078123 LoRisk

4 “K-Nearest Neighbors.” k-Nearest Neighbors - Python Tutorial. https://pythonbasics.org/k-nearest-neighbors

24

https://pythonbasics.org/k-nearest-neighbors/

. CFG = CFstockRets300[,-1]
. table (CFG[, 3])

HiEet LoRet

167 133
> head (CFG)
Lag2ret Laglret Cfret

291 -1.33600%531 0.55070105 HiRet
4001 0.07501293 -0.09T7e6377 LoRet
919 -0.26368474 -0.070349668 LoRet
3241 1.14%45322 0.30523525 LoRet
2777 -0.56848421 -1.13788632 LoRet
l&?l 0.96224554 -0.14314606 LoEet

Now, I will use the first 150 observations as my training set and the final 150 observations as
my testing set for both the return and risk data. | will use the k=11 parameter for the knn function

. predRet.knn = knn (CFH[1:150,1:2],CFH[151:300,1:2],CFH[1:150,3],11)

- table (predBet.knn, CFH[LS1:300,3])

predBet.knn HiRisk LoRisk

HiRisk 69 16
LoRisk 14 51
Actual
HiRisk LoRisk
HiRisk 69 16
Forecasts
LoRisk 12 51

The forecast was correct 120/150 = 80% of the time for the risk data. Let’s do the same thing for
the return data set.

Lol DW L O P P A
> predRet.knn = knn(CFG[l:150,1:2],CFG[151:300,1:2],CFG[1:150,3],11)

> table (predRet.knn, CEFG[L151:300,3])

predRet.knn HiRet LoRet
HiERet 53 35
LoRet 3z 30

25

Actual

HiRet LoRet
HiRet 53 35
Forecasts
LoRet 32 30

The forecast was correct 83/150 = 55% of the time.

The forecast for risk is more accurate than the forecast for returns.

plot (CFE[1:150,1:2], col = l4unclass(factor (CEH[L1:150,3])),pch=20, cex=2,xlim=c(-5,5),vlim=c(-5,5))
pred.knn = kmn (CFH[1:150,1:2],stGrid, CFH[1:150,3],1)

points (stGrid, col=l+unclass(pred.knn), pch=20, cex=0.3, xlim=c(-5,5), vlim=c(-5,5))
title (main="ENN for HiLo CF risk by Shuvam Bhowmick™)

Classification plot for the risk Data set :

KNN for HiLo CF risk by Shuvam Bhowmick

Lag TSk

LagZrisk

The knn classification plot created a diagonal separation between the high risk points and the low
risk points.

27

Classification plot for the return Data set :

plot (CEFG[1:150,1:2), col = l+unclass(factor(CFG[L1l:150,3])),pch=20, cex=2,xlim=c(-5,5),vlim=c(-5,5))
pred.knn = knn (CFG[1:150,1:2],stGrid, CFG[l:150,3],1)

points (stGrid, col=l+unclass(pred.knn), pch=20, cex=0.3, xlim=c(-5,5), vlim=c(-5,5))

title (main="ENN for Hilo CF returns by Shuvam Bhowmick"™)

KNN for HiLo CF returns by Shuvam Bhowmick

q‘_
N_
—
D
| -
=
o Y
©
4
oy |
I

Lag2ret

The separation between the data isn’t very clear here. The clustering of points confused the knn

function. Looks like the risk data was easier to classify than the return data based when using the
KNN method.

28

Logistic Regression

Return Data Set

I will begin by creating a classification plot using my lagl and lag2 predictors. | will use two
libraries “dplyr” and “ggplot2” to create the plot.

» library(dplvyr)

> train_ind = sample(l:nrow(CFG), 0.38*nrow(CFG))
> train = CFG[train_ind,]

> test = CFG[-train_ind,]

> yvb = as.factor(ifelse (CFG[,2] = 0, "HiRet™, "LoREet™))

> model=glm (yb~CFG[,1] + CFG[,2], family = "binomial™)

goplot (data = model.framemodel), aes{x=CEG[,2], y=CFG[,1], color=yb)) + geom point() + geom abline(intercept = modelocoefficients[l], slope=modelicoefficients[2])
. 2 _

Shuvam's logistic regression classification plot for stock returns

-
2_
L]
- -
= - . - yb
@ 0- = HiRet
Lo
& - - LoRet
-
-
-
-
..
-
- -
_2—
-
4 2 o 5 4

CFGI, 2]

29

Explanation of code : the model function fits the data into a binomial regression which I then
used for classification plot. | entered the lagl and lag2 parameters into the ggplot functional
arguments. | also created the linear separation line using the geom_abline() function.

Risk Data Set

» vba = as.factor(ifelse (CFH[,2] > 0, "HiRisk"™, "LoRisk™))
> model = glm(vba~CFH[,1] + CFH[,2], family = "binomial™)
ggplot (data = model . frame (model), aes(x=CFH[,2], v=CFH[,l], color=yba)) + geom point/()
; —
geom_abline (intercept = modelicoefficients[l], slope=modelicoefficients[2])

Shuvam's logistic regression classification plot for stock risk

2_
=a0- yba
T * HiRisk
L
O * | oRisk
[]
[]
_2— .
.. []
.- L™
[]
[]
[] [] -
[]
[]
- -

The decision boundary is much more slanted in the risk data set than the return. It also looks
there are more misclassifications in the risk data set.

Predictions for Stock Risk and Return

library(dplyr)

train ind = sample(l:nrow(CFG), 0.8*%nrow(CFG))

train = CFG[train ind,]

test = CFG[-train ind,]

> mﬂde;=g;m[ybﬂh~trﬂj;:éo,ij + :ES:;:GD,E{: f;mi;y = "hinomial™, data=train
Warning messages:

1: glm.fit: algorithm did not converge

2: glm.fit: fitted probabkbilities numerically 0 or 1 occurred

- ywhbk = data.frame (yb)
> head (vbk)
vk
HiRet
LoRet
LoRet
HiRet
LoRet
LoRet
> ybkh = ybk[l:60,]
> head(ybk[1l:60,]

[Ty T O WU oS Iy B

The data is split where 240 observations are training and 60 are testing. | will use 240
observations to predict the 60 observations.

| did the same procedure for the risk data but changed the prediction parameter and data rows to
match the risk data.

> yhkhi = data.frame (vha)
> head({yblkhi)
vba
HiRisk
HiRisk
HiRisk
HiRisk
LoRisk
HiRisk

o s W R

nredictions.logistic = predict (model, newdata = CEFGN[L151:300,3])

31

» table(predictions.logistic, CFGN[151:300,3])

predictions.logistic HiRisk LoRisk
HiRisk 78 24
LoRisk 15 33

For the Risk data , the logistic regression predictions were correct 111/150 = 74% of the time.

T T T

- table (predictions.logistic.Beturns, CEFG[L51:300,3])

predictions.logistic.Returns HiRet LoERet
HiRet 50 37
LoRet 35 21

=]

For the returns data, the logistic regression predictions were correct 78/150 = 52% of the time

32

Naive Bayes

For this section, | am going to use the bayes classifier and predict function for n=300 randomly
selected observations. First, | will use the naiveBayes function to train the data using the first 150
observations. Afterwards, | will use the predict function to classify the other 150 observations
(we can call this the test set).

Return Data Predictions

> classifier.bayes = naiveBayes (CFG[L1:150, 1:3], CFG[1l:150,3])

predict . baves=predict (classifier.bayes, CFG[L51:300,1:2])

predict.kbayes HiERet LoRet
HiRet 73 35
LoRet 12 10

Forecast is classified 83/150 = 55% correctly

Risk Data Predictions

> classifier.bayes = naiveBayes (CFH[1:150, 1:3], CFH[1:150,3])
- predict.bayes=predict (classifier.bayes, CFH[1S1:300,1:2])

predict.bayes HiRisk LoRisk
HiRisk 6o 17
LoRisk 14 S0

Forecast is classified 119/150 = 79% correctly

33

Return Data Classification Plot Naive Bayes

colnames (stGridiB) = colnames (CFG[,1:2])

classifier.bayes = naiveBayes(CFG[1:150, 1:2], CFG[L:150,3])

pred.stbridiB = predict(classifier.bayes, stGridNB)

plot (CFG[L:150, 1:2], col=l+unclass(factor(CEG[1:150,3])), cex=2,pch=20,xlim=c(-5,3),vlim=c(-5,3) ,main="Shuvam Bhowmick's Bayes Plot stock returns”)
points(stGridiB, col=l#unclass(pred.stGridNB),pch=20,cex=0.3,xlin=c(-5,5), vlim=c(-5,5))

Shuvam Bhowmick's Bayes Plot stock returns

Lagiret
0
|

LagZret

The classification is very unclear since the high return (green) points and the low return (red)
points are clustered together. I’m not sure why the naive bayes decided to cluster the points
instead of separating them down the diagonal like svm. One conclusion that could be made is if
yesterday’s return (“Lag2ret”) were low than today’s returns would also be low given that there
are more red points on the left side of the graph than the right.

34

Risk Data Classification Plot Naive Bayes

classifier.bavyves = naiveBaves (CFH[1:150, 1:2], CFH[L1:150,3])
pred.stiGridNE = predict (classifier.baves, stiGridiB)

plot(CEA[1:150, 1:2], col=l+unclass(factor (CFR[1:150,3])), cex=2,pch=20,xlin=c(-5,5),vlin=c|-5, 5) ,main="3huvam Bhowmick's Bayes Plot stock risk")
pointa(stbridg, col=l4unclass(pred.stbridhg),pch=20,cex=0.3,xlin=c(-5,5), vlim=c(-5,5))

Shuvam Bhowmick's Bayes Plot stock risk

Laglrisk
0
|

Lag2risk

The Naive Bayes classification method worked better for the risk data than the return data. We
can see a clear boundary between the low risk and high-risk points here.

35

CFindustries Return Data

(Using training data to classify new data)

SVM Actual
Predicted Low Return High Return
Low Return | 32 33
High Return | 42 43
75/150 = 50%
accurate
KNN
53 35
32 30
83/150 = 55% accurate
Logistic Regression
50 37
35 28
78/150 = 52% accurate
Naive Bayes
73 55
12 10

83/150 = 55% accurate

** For svm we correctly predicted 32 low return data points, and 43 high return data
points which gives us an accuracy rate of 50%. The other numbers are

misclassifications**

36

CFindustries Risk Data

(Using training data to classify new data)

SVM Predicted Actual
Low Risk High Risk
Low Risk | 67 18
High Risk | 17 48
115/150 = 77%
accurate
KNN
69 16
12 51
120/150 = 80% accurate
Logistic Regression
78 24
15 33
111/150 = 74% accurate
Naive Bayes
69 17
14 50

79/150 = 79% accurate

** For svm we correctly predicted 67 low risk data points, and 48 high risk data points
which gives us an accuracy rate of 77% **

37

Overall, the returns were harder to forecast/classify compared to the risk of the CFindustries
stock. The data suggests that it is easier to predict risk than it is to predict returns. Some research
has suggested that predicting stock risk may be more difficult because it involves assessing the
potential losses and “volatility”® of a stock, which can be affected by a wide range of internal and
external factors. On the other hand, predicting stock return may be more straightforward because
it is typically measured by the change in the stock price over a given period, which can be more
easily quantified and modeled. Predicting stock risk and stock returns using classification
methods such as Support Vector Machines (SVM), Naive Bayes, Logistic Regression, and K-
Nearest Neighbors (KNN) involves different approaches and assumptions. SVM and Logistic
Regression are models that can be used for binary classification, where the goal is to predict
whether a stock will have high or low risk or return. On the other hand, Naive Bayes is a
probabilistic model that can be used for multiclass classification, where the goal is to predict the
specific class or category that a stock belongs to based on its risk or return characteristics. KNN
IS a non-parametric method that can be used for both binary and multiclass classification, and it
makes predictions based on the similarity of the stock to its nearest neighbors in the feature
space. Overall, the choice of classification method will depend on the specific characteristics of
the stock dataset and the goals of the analysis.

5 Finra.org, https://www.finra.org/investors/investing/investing-basics/risk

38

https://www.finra.org/investors/investing/investing-basics/risk

plot (x, col=(3-v), main = "Shuvam Bhowmick's Matrix Flot™) e

Appendix :

This Lab in broken up into two parts. In the first part, we will look at the Support Vector
Classifiers and then Support Vector Machines. The concepts in both labs are essential in
understanding the mechanisms behind SVM along with some of its parameters.

PART ONE : SUPPORT VECTOR CLASSIFIERS

| am going to present how to use the svm() function to fit the support vector classifier for a given
value of a cost parameter. We are going to use the function on a two-dimensional example so we
can plot the decision boundary.

First, I will generate observations and then check for a linear separation for the matrix plot.

t.zeed(l)
matrix (rnorm (20%2), ncol=2)
y=clrep|(-1,10) ,rep(l,10)])

= [= —|'.= :,:--.‘_r==' 4 1

- - =r . -

=

m
m

1|
il

|| I

Shuvam Bhowmick's Matrix Plot

o
o
N_
o
o
- 1 o o o o
o
o e
o
&
=< o
S T o
o
o
o
—
'
o
N o
I I I I
-1 0] 1 2
X[,1]

Looks like the classes for the plot are not linearly separable. For the svm() function to perform
classification , I must encode the response as a factor variable using a dataframe.

dat=data.frame (x=x, v=as.factor(v))
library(el071)
svmfit = svm(y~., data = dat , kernel = "linear"™ cost = 10, scale = FALSE)

39

x.1

The argument scale = FALSE tells the svm function not to scale each feature to have mean zero
or standard deviation one. Depending on preferences, one might prefer scale=TRUE. A cost
argument allows us to specify the cost of a violation to the margin. When the cost argument is
small, then the margins will be wide and many support vectors will be on the margin or will
violate the margin. When the cost argument is large, then the margins will be narrow and there
will be few support vectors on the margin. We want to tune the C parameter so that we reduce
overfitting by allowing some samples inside the margin but not eliminate the large margin
properties that are beneficial for accurate classification. Now we will plot the support vector
classifier obtained :

“dat” are the output of the call to svm(), as well as the data used in the call to svm().

Shuvam Bhowmick’s SVM plot C = 10

X.2

40

The yellow region is assigned to the feature space of the -1 class while, the red region is assigned
to the feature space +1. The decision boundary between the two classes is linear since we used
the kernel = “linear”” parameter in the svmfit function. The first feature is plotted on the y-axis
while the second feature is plotted on the x-axis. Features define the classification characteristics.
The support vectors are plotted as crosses and the remaining observations are plotted as circles.

> svmfitSindex
[1] 1 2 5 7 14 1& 17

We can identify the support vectors using the svmfit$index command. There are 7 support
vectors in our plot.

Here is the summary of the svmfit function:

> summary (svmfit)
Call:
svm(formnmla = v ~ ., data = dat, kernel = "linear", cost = 10, scale = FALSE)
Farameters:
SWVHM-Type: C-classification
SWVM-Eernel: linear
cost: 10
Hunmker of Support Vectors: 7
i 4 3
Humber of Classes: 2
Levels:
-1 1

Now we will plot the linear kernel using a cost parameter of 0.1 instead of 10.

41

svymfit = svm(v~., data=dat, kernel = "linear™, cost = 0.1, =scale = FALLSE)
slot (svmfit, dat)

Shuvam Bhowmick’s SVM plot C = 0.1

X.2

svmfitfindex
[r] 1 2 3 4 5 7 & 10 12 13 14 15 16 17 18 20
1

Because we used a smaller value for the cost parameter, we obtain a larger number of support
vectors, since the margin is now wider. The symbols “x” indicates the support vectors. Based on
the index function, there are 16 support vectors instead of 7.

42

The e1071 library includes a built-in function, tune(), to perform cross-validation. By default,
tune() performs ten-fold cross-validation. The following arguments in the tune() function refers
to the comparison of SVMs with a linear kernel while using a range of the cost parameter.

set.seed(l)
tune.out = tune(svm, y~., data=dat, kernel = "linear", ranges = list(cost = c(0.001, 0.01, ©.1, 1, 5, 10, 100}))

We can access the cross-validation errors for each of these models using the summary()
command.

> summary |{tune.out)
Parameter tuning of ‘svm':
- sampling method: 10-fold cross wvalidation
- best parameters:
cost
0.1

- best performance: 0.05

- Detailed performance results:
cost error dispersion

1 le-03 0.55 0.4377875
2 le-02 0.55 0.4377875
3 le-01 0.05 0.158113%
4 le+0O0 0.15 0.2415225
5 Se+00 0.15 0.241522%5
&€ le+0l1 O0.15 0.241522%5
T le+02 0.15 0.2415225

43

We can see that cost = 0.1 results in the lowest cross-validation error rate. The turne() function
stores the best model obtained which we will access with the following command.

> bestmod=tune.outfbest.model
> summary (bestmod)

Call:

best.tune (method = svm, train.x = y ~ ., data = dat, ranges = list(cost = ¢(0.001, 0.01, 0.1, 1, 5, 10, 100)), kernel = "linear"

Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 0.1
Humber of Support Vectors: 16

(88)

Humber of Classes: 2

Levels:
-11

The predict() function is used to predict the class label on a set of test observations, at any given
value of the cost parameter. Let’s begin by generating a test data set.

Xxtest=matrix(rnorm (20*2) , ncol=2)
yvtegt=gample (c(-1,1), 20, rep=IRUE)
xtegt[vtest==1,]= Rtest|[ytest==1,] + 1

testdat=data.frame (Xx=xtest , v=asz.factor(ytest))

Now, we will predict the class labels of these test observations. We will then use the best model
obtained through cross-validation in order to make predictions.

- ypred = predict (bestmod, testdat)
- table (predict = ypred, truth = testdativ)
truth
predict -1 1
-1
1

W
=

28]
cn

Based on the bestmod cost value of 0.1, 17 test observations are correctly classified.

Let’s use cost = 0.01 to see what happens.

> gvmfit = svm(y~., data=dat, kernel = "linear™, cost = .01, scale = FALSE)
- ypred = predict(svmfit, testdat)
> table (predict = ypred, truth=testdativ)

truth
predict -1 1
-1 11 &

1 o 3

In this case only 14 were correctly classified which is 3 less than before.

44

x[v = 1.] = x[v==1 + g

Let’s consider a situation in which the classes in our simulated data are linearly separable.

*This Line of code further separates the two classes as
shown in the plot.

= (y+5)/2, pch=1%, main = "5hu

plot (=, col

"Shuvam Bhowmick's Classification Plot™)

Shuvam Bhowmick's Classification Plot

m_
o
[—
e
~ e
3 @
e
e
© T @
e
e
-]
1
e
N)
T T T T
-1 0 1

x[1]

Because of the modifications, the plot is somewhat linearly separable.

45

Now, we fit the support vector classifier and plot the resulting hyperplane, using a very large
value of cost so that no observations are misclassified. The cost argument equal 10"5

dat=data.frame (x=x, v=a=s.factor(v))
svmfit=svm(y~., data=dat , kernel ="linear", cost=lel)
> summary (svmEfit)
Call:
svm(formmla = ¥y ~ ., data = dat, kernel = "linear", cost = le+05)
Parameters:

SVH-Type: C—-claszification
SVHM-Kernel: linear
Ccost: le+05

Humker of Support Vectors: 3

(1z)

3

Humker of Classes: 2
Levels:

-11

Only 3 support vectors were used. Now, let’s plot to see where the support vectors and
observations are located.

46

Shuvam Bhowmick’s SVM Classification plot C = 1075

x.1

X.2

The margins are very narrow since the observations that are not support vectors, indicated as
circles, are very close to the decision boundary. However, not a single training error occurred
here. All the red points are on the red side of the classification while all the black points are on
the yellow side. Let’s see the plot with a smaller value of cost.

47

svmfitc=svm (v , data=dat , kermel ="linear™, cost=1l)
summary (svmEfit)
Call:
svm(formula = v ~ ., data = dat, kernel = "linear"™, cosSTC
Parameters:
SVH-Tvpe: C—classification
SWVHM-EKernel: linear
cost: 1
Number of Support Vectors: 1=}
(2 3)
Humlzer of Classes: 2
Levels:
-1 1
. Py —
Shuvam Bhowmick’s SVM plot C = 10"5
3 —
2 —
s
x
l —
(o]
0 -

= 1)

X.2

Using cost=1, there is one training observation that was misclassified.

The margin here is much wider and we are making use of 7 support vectors. This model will
perform better on test data than the model with cost = 10"5 because of the wider margin and
extra support vectors. Its unfortunate that one observation is misclassified but we have to
introduce some bias to decrease the variance that will occur in the test data predictions.

48

PART 2 SUPPORT VECTOR MACHINES

We will continue using the Svm() function to fit data but this time with new arguments. We will
fitan SVM with two different non-linear kernels : polynomial and radial. We will also use the
degree argument to specify a degree for the polynomial kernel. For the radial kernel , we will use
the gamma argument to specify the value of y (omega) . Degree and Gamma are like the C
parameter in that they adjust the functions of the decision boundary to better separate two classes
in an SVM plot. The two non-linear decision boundary functions are :

1.
D
K(-’T:i, j_]_?i;) = (J_ + Z .’L‘ij.’fi;j)d.
J=1 d = degrees
2. P
K(z;,zir) = exp(—’}*;(ﬂfsj - xi)°). y =Omega

We will begin by generating some data with a non-linear class boundary

et.seed(l)

s
X = matrix(rnorm(200%2), ncol = 2)
®[1:100,]=x[1:100,]+2
x[10 1==[10 50,1-2
v=Cc(rep(l,150) 50))
dat=data.frame (x=x,y=as.factor(v)]) plot(x, col = vy, main = "Shuvam's radial 5VM plot")
Shuvam's radial SVM plot
OC)
=T o 1)
OO o o
o o o
e & g & SR} o
© o o o
° P ° ‘13’0dD)
o o © 850
N oo 5 © o o ©0 o
o °o © o @90 O °
@ e} o 8o o
o o o o ® o o
o o
oo © © o C)Oo o © ©
N o o o © o o
] o o
< o o (S] o Oo o a o © o o
o o QO 8
o
© o Q o
o o® o o
3 v o
o o© pac] - o
@ o©®
o~] © & S° co o
o< 2% o
o o o o
) o .
e o o o
o o
o
<] o
' o
T T T T T
-4 -2 (e} 2 4
x[,1]

49

Based on the plot, it’s clear that the decision boundary will be non-linear.

The data is randomly split into training and testing groups. We then fit the training data using the
svm() function with a radial kernel and y = 1

train==sample (200,100

svmfit=zvm(y~., data=dat[train ,], kernel ="radial", gamma=1l, cost = 1)
plot (svmfit, dat[train,], main = "shuvam's radial plot with training data™)
1

shuvam’s radial plot with training data

4 —
o~
2 p—
—
<
0 p—
—
-2
P
o
° o
I I I I
-2 0 2 4
X.2
> summary (svmiit)
Call:
svm{formmala = v ~ ., data = dat[train,], kermel = "radial"™, gamma = 1, cost = 1)
Farameters:
SVHM-Twype: C—classification R
SVM-Kernsl: radial The summary() function can be
soses 4 used to obtain some information
Humber of Support Vectors: 37 about the SVM fit:
{ 18 19)
HNumber of Classes: 2
Levels:
1 2

50

We can see the decision boundary is oval shaped and non-linear. In the plot, we also see a fair
number of training errors. If we increase the value of cost, we can reduce the number of training

errors. However, this comes at a price of a more irregular decision boundary that seems to be at
risk of overfitting the data.
svmfit = svm(y~. , data = dat[train,]

]l kernel = "radial"™, gamma = 1, cost = lei)

plot(svmfit, dat[train,], main = "shuvam's radial svm plot with c = 10°5")

shuvam’s radial plot with training data

x.1

X.2

The plot almost looks like artwork! The shape of the decision boundary is much more irregular
compared to the plot with C = 1. However, this plot seems to have less training data errors.

51

We can perform cross-validation using tune() to select the best choice of y and cost for an SVM

with a radial kernel.

tune.out = tune (svm,
ranges = list (cost=c (0.
> Summary (tune.out)

Parameter tuning of

- sampling method: 1

- best parameters:

v~., data=dat[train,]

1, 1, 10, 100, 1000),

‘zvm' o

0—-fold cross wvalic

COStT Jgamms P
- . I
1 2

- best performance:

Detailed performan
COSt gamma SIrror

1 le-01 0.5 0.24
Z le+00 0.5 0.14
3 le+0l 0.5 0.15
4 1le+02 0.5 0.18
5 1le+03 0.5 0.17
€ le-01 1.0 0.24
7 le+00 1.0 0.14
& le+0l 1.0 0.18
9 le+02Z 1.0 0.19
10 1le+03 1.0 0.19
11 le-01 2.0 0.24
12 le+00 2.0 0.13
13 le+0l 2.0 0.19
14 le+02 2.0 0.17
15 1le+03 2.0 0.20
16 le-01 3.0 0.24
17 le+00 3.0 0.15
18 le+0l 3.0 0.16
19 le+02 3.0 0.19
20 le+03 3.0 0.22
21 le-01 4.0 0.24
22 1le+00 4.0 0.17
23 le+01 4.0 0.16
24 le+02 4.0 0.20
25 1e+03 4.0 0.21

> table(true = dat[-train,"y"], pred = predict(tune.cutebest.model, newr=dat[-train,]))

pred
true 1 2

15915

220 6

0.13

ce results:
dispersion
20655911
LA10749677
LO9T1E253
LA2292726
145944341
20655911
09660918
LA2292726
LA1E633300
LA3ITO3203
20655911
LA11595018
LATO19573
LA156T0212
14142136
20655911
LA10801234
LASTTE2Z1S
LA12E66839
LATS11901
20655911

14544341
.15776213
L13333333
LATE18573

[s [B = T N O T e O e O Y N e T e O T O s s

, kernel = "radial™,

gamma = c(0.5,1,2,3,4)1))

Best choice of parameters involves

- Cost =1 and gamma = 2

We can view the test set
predictions for this model by
applying the predict() function to
the data. To do this we subset the
dataframe dat using -train as an
index set.

35% of the
observations are
misclassified

52

Works Cited

1. “History.” CF Industries. https://www.cfindustries.com/who-we-are/history

2. Tumminello, Aurora. “Statistical Models Part I1.” Chapter 11 Support Vector Machines.
https://bookdown.org/aurora tumminello/statistics lab/support-vector-machines.html

3. Kuhn, Max. “The Caret Package.” 5 Model Training and Tuning, March 27, 2019.
https://topepo.qgithub.io/caret/model-training-and-tuning.html

4. “K-Nearest Neighbors.” k-Nearest Neighbors - Python Tutorial. https://pythonbasics.org/k-

nearest-neighbors/

5. Finra.org, https://www.finra.org/investors/investing/investing-basics/risk

6. James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. “Chapter 9 : Support
Vector Machines.” Essay. In An Introduction to Statistical Learning: With Applications in R.
Boston: Springer, 2021. https://hastie.su.domains/ISLR2/ISLRv2_website.pdf

53

https://www.cfindustries.com/who-we-are/history
https://bookdown.org/aurora_tumminello/statistics_lab/support-vector-machines.html
https://topepo.github.io/caret/model-training-and-tuning.html
https://pythonbasics.org/k-nearest-neighbors/
https://pythonbasics.org/k-nearest-neighbors/
https://www.finra.org/investors/investing/investing-basics/risk
https://hastie.su.domains/ISLR2/ISLRv2_website.pdf

