
1

Unleashing the Power of Statistics on Stock Data: A Comprehensive Approach to

Classification using Naive Bayes, KNN, Logistic Regression, and SVM

 Shuvam Bhowmick

2

Table of Contents

1. CFindustries Stock overview and data collection on Excel (pg. 3 and 4)

2. SVM method on stock data (pg. 5-11)

3. Analysis of Tuning Parameter, C (pg. 12-18)

4. SVM classification plot (pg.19-23)

5. Classification methodology (pg.24)

6. KNN classification (pg. 25-28)

7. Logistical Regression (pg. 29-32)

8. Naive Bayes (pg. 33-35)

9. Forecast table for Return and Risk data with all methodologies (pg.36-37)

9. Classification methodology conclusions (pg. 38)

10. Appendix with ISLR SVM() textbook example(pg. 39-52)

3

1. In this paper, I will be working with stock data of the manufacturing company CFindustries

who are well known for its innovative fertilization products. Interestingly, this company spent

most of its life being a non-stock company, working closely with regional agricultural supply

cooperatives. The original name of CFindustries was the “Central Farmers Fertilizer Company1”

founded in 1946. CFindustries become a stock company in 2002 after 56 years of trade. I will

now explain why we took two different transformations of the price return and risk data.

First transformation : For the return stock data, I worked with the percentage change of the

adjusted daily closing price. By doing this, we can see how the return percentage changes over

time between two consecutive adjusted closing prices. This gives us a clearer understanding of

what the average return might be since we can see the average percent change of the stock. From

the picture below, you can see how Column “I” contains a formula that subtracts the adjusted

close of the previous day from the adjusted close of the current observation. It then multiplies the

subtracted value by 100 and divides that number by the previous adjusted close price.

Second transformation: For the risk stock data, I used the daily price range (High – Low)

transformation. This gives us an idea of how the stock moves daily. In other words, we compute

the daily volatility of the stock to understand the risk. It is useful to take the logarithm of the

range because logs respond well to the problem of skewness that can come about from large

daily swings. The logs can reduce some of the larger variation that comes with large daily

swings. By using the log of the percent change of the stock, we account for outliers or unusual

price movements. From the picture below, you can see how column “J” contains the formula

High (Column C) – Low (Column D) to get the daily range. We then took the logarithm (excel

using ‘ln’) of the daily range values in column J.

 BEFORE AFTER

1 “History.” CF Industries. Accessed December 15, 2022. https://www.cfindustries.com/who-we-are/history

https://www.cfindustries.com/who-we-are/history

4

I created lagged stock data to show the return and risk data in multiple columns. Before I show

that process, I will mention that I started by standardizing the return and risk data. For this, we

subtract the mean of the entire return/risk column from each observation and divided it by the

standard deviation.

Formula in column E : (B2 - L2)/ L3

Formula in column F : (C2 - M2) / M3

After the standardization, I created the lagged stock data by making three copies of each column

(Cfrisk and Cfret). We then created time-lagged versions of these columns by deleting the first

entry of the second column and the first two entries of the third column. The first column

remained unchanged. I renamed the first two columns as lag2 and lag1.

Next, we delete the third column labeled Cfret and Cfrisk because those columns hold the most

current return/risk values. The purpose of the lagged stock data is to use day-before-yesterday

and yesterday return/risk values to determine the forecast of “today’s”(deleted column which

will be used for testing) return. To make things a bit simpler, we will use the if function that will

convert the last column into a categorical factor of being either high or low. With this, we can

use the previous two days of values to determine whether “todays” return will be either high or

low.

Cfret Column Function : **Same function for Cfrisk just different column

5

2. For part 2, I will draw a random sample of size n=300 without replacement from CFindustries

stock returns data set. This sample will come from 300 randomly selected observations from a

total of 4246 trading days. In other words, 300 rows of the return dataset will be pulled randomly

from 4246 rows. I will do the same procedure for the CFindustries risk data set.

Now that we have our subsets of risk and return data, I can go through the steps of SVM while

explaining the methods being used for classification (reference appendix for ISLM textbook

steps)

We will be working with two classes : High and Low returns. We will be classifying the lagged

stock data. As I mentioned before, the purpose of the lagged stock data is to use day-before-

yesterday and yesterday return values for predicting the forecast of “today’s” return. With the

SVM method, we will train the model using the lagged training data and test the accuracy of

predictions using the test data.

Create a variable than contains 300 sample observations from the stock return dataset of 4246

observations. I will plot the classification and see if it is linearly separable.

CFstockRets300 and CFstockRisk300N is the sample of 300 observations from the excel data

put into a data frame. I then used only the lagged stock data columns and created another matrix

called H. I will use this second matrix to show the classification plot on the next page.

6

The blue points represent high-return data points or lagged stock returns that have returns greater

than zero. The red points represent low-return data points. It looks like this plot is linearly

separable. We must test whether a linear boundary or a non-linear boundary will produce better

separations of data. First, let’s add some linear support vector classifiers and test the

classification.

7

 LINEAR SEPERATION

 Shuvam Bhowmick’s Stock SVM plot C = 10

The Linear kernel is using 36 support vectors:

The points marked as “X” are support vectors and the black/red circles are stock observations.

We have a large cost parameter of 10 with many support vectors. Is this optimal? We will answer

that question in part 3. For now, we will look at the classification plots for another kernel

8

 RADIAL SEPERATION

Shuvam Bhowmick’s Stock SVM plot C = 10

The svm() function is using the radial kernel.

The number of support vector machines has

increased from before even though the cost

parameter is still C=10. The radial kernel has

increased the width of the margin.

9

Now, that we have created SVM plots for the stock return data, we will know do the same for the

stock risk data. I will begin by setting up my matrix the same way I did for the return data (using

cbind()).

I will now plot the data where the red points represent high risk and the green points represent

low risk. Yesterday’s percentage change of risk is on the y-axis, while the day-before yesterday’s

percentage change is on the x-axis.

This plot looks very similar to the return data plot. However, there might be a sharper linear

separation here.

10

The OP variable is creating the classification for the svm function. We are using a linear kernel

with a cost of 10 which should give us a smaller width margin.

 Shuvam Bhowmick’s Stock Risk SVM plot C = 10 LINEAR SEPERATION

There are 32 support vector classifiers with a decent sized margin. It looks like there is a good

spread of support vectors on both sides of the classification boundary(bottom yellow represents

low risk, and red represents high risk). There are a few high-risk points leaning towards the low-

risk side. Let’s look at a radial kernel and see if that helps reduce the classification errors.

11

There was an increase in support vectors. Changing from a linear kernel to a non-linear kernel

did not change the classification. It looks like the radial kernel is a bit more conservative in terms

of the space used for the red classification (high risk). This may suggest that the probability of

risk being classified as high is smaller than it is for low.

In general, the definition of high risk can depend on how risk adverse a person is. However,

everyone can agree if a return is high or not by comparing previous returns. Using the svm

method, it also looks like the linear kernel performs just as well as the radial kernel. Using a

linear or non-linear decision boundary does not make a difference in terms of how correct the

classifications are. However, when we used the radial (non-linear) decision boundary, the

program used more support vectors which maximizes the margin.

12

3.

The “cost parameter2” in SVM maximizes the trade-off between achieving a low error rate on the

training data and allowing the model to be more flexible to generalize new data. A high-cost

value will result in a model with low error on the training data but wouldn’t generalize well to

new data. A low-cost value will result in a more flexible model that may have a higher error on

the training data but better generalization of new data. The cost parameter is determined through

cross-validation, where the model is trained on a subset of data and tested on the remaining data.

Let’s test the cost parameter by using the built-in tune() function (available in the library e1071)

to perform cross-validation. By default, the tune() function performs ten-fold cross-validation

using a range of cost parameters. This will set us up for testing which cost parameter works best.

Based on the tune.out() function, the cost parameter that performs the best is Cost=100. This

allows for fewer errors on training data but may not work well with classifying new data.

2 Tumminello, Aurora. “Statistical Models Part II.” Chapter 11 Support Vector Machines.
https://bookdown.org/aurora_tumminello/statistics_lab/support-vector-machines.html

https://bookdown.org/aurora_tumminello/statistics_lab/support-vector-machines.html

13

The cost parameter of 100 gives us the lowest cross-validation error rate so we will store this

model for later use.

For the classification of the return data, there are no errors. Let’s see if the same holds for the

risk data set.

14

The tune() function says that the best cost parameter function to use is 100 based on the given

range (0.001, 0.01,1,5,10,100)). Let’s store that model with the best cost function and determine

its performance on the training data set.

There are 2 classification errors for the risk training data, while the return data had 0. The model

predicted low risk(0) when 2 observations were actually high risk. This could mean that it is

harder to classify the risk levels of the stock using the SVM() method then it is to classify return

levels. Since 298 out of 300 risk points were classified correctly, we can neglect the

classification errors. However, if we worked with a bigger sample size, the classification errors

will be larger in most cases.

After observing the classification performance, let us now look at how the model performs at

predicting new data. I will take a brand new sample of 300 observations of risk and return data

points from the 4246 observations. I will then split it in half. 150 observations will be used to

train the model for prediction of the second half.

First, let’s create the training and testing data set.

There are 150 observations for each of the subsets. Cfret refers to what we will be

predicting and it must be factorized.

15

Now we control the training process by setting the cross-validation attributes. We will iterate the

cross-validation method 10 times and repeat the entire process 3 times. A 10-fold Cross-

validation3 repeated 3 times refers to dividing the training data into 10 parts and performing

cross-validation 3 times on each of those partitions. This can be useful for model selection and

evaluation because it allows the model performance to be estimated multiple times, which can

help to reduce the variability of the estimate and provide a more reliable assessment of model

performance. Let’s see how the model performed when using the testing set.

3 Kuhn, Max. “The Caret Package.” 5 Model Training and Tuning, March 27, 2019.
https://topepo.github.io/caret/model-training-and-tuning.html

The model was able to predict the

outcomes of the testing data with an

accuracy of 50%. This is quite low so let’s

adjust the tuning parameter.

https://topepo.github.io/caret/model-training-and-tuning.html

16

The final C parameter for the model was chosen to be C = 0.01 which gives us an accuracy of

51%. The accuracy did not improve much after tuning the parameter C.

17

Since the code is the same for the risk data set, I will just show the accuracy and tuning of the

risk svm model.

The model was 76% accurate at predicting risk on the testing data after training. Let’s adjust the

C parameter to try and increase the accuracy of the model.

The final value for the model was C = 0.5 . This is where we achieve the highest accuracy.

18

Let’s see how the prediction table looks using C value of 0.5

The best accuracy of 76% was achieved when we used C=0.5257. Overall, the model was able to

predict the classification of new data with higher accuracy for risk than return. This is quite odd

since we used a higher Cost parameter value for the risk model, yet it performed better with the

new data than the return model. In general, I believe it is easier for the model to predict the risk

level of the stock compared to the previous two days than it is to predict the returns based on

previous two days’ returns.

19

4. I will now create step-by-step classification plot for the SVM methodology without using the

SVM software generated plots like before.

n=300 return data set

We will start off with just plotting the points,

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

H[,1]

H
[,2

]

20

We will now need to implement a grid.

21

The grey points residing in the black part of the graph represents low return data based on the x

and y-axis. The black points on the red side represent high return data. It makes sense that the

predict() function in the code would pick a linear boundary. However, the boundary seems to

spike inward and outward instead of being a straight line.

22

 n=300 risk data set

We will start off with just plotting the points of the matrix while using the condition of the first

column being less than 1. This indicates orange points

Green points represent low risk, while the red points represent high risk. We will now create an

SVM classification plot using a somewhat linear boundary.

23

As you can see, there are more classification errors for the risk plot than the return plot when we

use a linear boundary. But overall, most of the purple points (or low risk points) are on the

correct side of the classification while most the grey points are on the correct side of

classification as well.

24

5. In the final part of this project, I will prepare a comparative study of knn, naïve Bayes, logistic

regression ,and SVM using my stock and risk observations. Before I do that, I want to compare

these methodologies and explain their significance.

KNN is a non-parametric method that uses a distance metric to find the “k-nearest neighbors4”of

a point and predicts the labeling of the neighbors. The method is sensitive to the choice of k and

distance metric. Naïve Bayes is a probabilistic method that makes predictions based on the Bayes

theorem, which states that the probability of the label and the likelihood of the features given in

the label. This method is efficient, but it makes an unrealistic assumption that the features are

independent of each other. Logistic regression is a parametric method that uses a logistic

function to model the relationship between the dependent variable and the independent variables.

One downfall of the logistic regression method is that it can only model binary classification

problems and assumes a linear relationship between the dependent and independent variables.

SVM is a non-parametric method that uses a kernel function to map the data into a higher-

dimensional space, where it finds the hyperplane that maximally separates the two classes. This

method is effective in high dimensional spaces and can handle non-linear boundaries but can be

sensitive to the cost parameter. Each of these methods have their advantages and disadvantages

so the specific characteristic of the data and requirements of the task will determine which ones

work best.

Knn Method

First, I will prepare my stock return and risk data so I can draw predictions and display a

classification plot.

4 “K-Nearest Neighbors.” k-Nearest Neighbors - Python Tutorial. https://pythonbasics.org/k-nearest-neighbors/

https://pythonbasics.org/k-nearest-neighbors/

25

Now, I will use the first 150 observations as my training set and the final 150 observations as

my testing set for both the return and risk data. I will use the k=11 parameter for the knn function

The forecast was correct 120/150 = 80% of the time for the risk data. Let’s do the same thing for

the return data set.

 Actual

 HiRisk LoRisk

Forecasts
HiRisk 69 16

LoRisk 12 51

26

The forecast was correct 83/150 = 55% of the time.

The forecast for risk is more accurate than the forecast for returns.

 Actual

 HiRet LoRet

Forecasts
HiRet 53 35

LoRet 32 30

27

The knn classification plot created a diagonal separation between the high risk points and the low

risk points.

Classification plot for the risk Data set :

28

Classification plot for the return Data set :

The separation between the data isn’t very clear here. The clustering of points confused the knn

function. Looks like the risk data was easier to classify than the return data based when using the

KNN method.

29

Logistic Regression

Return Data Set

I will begin by creating a classification plot using my lag1 and lag2 predictors. I will use two

libraries “dplyr” and “ggplot2” to create the plot.

30

Explanation of code : the model function fits the data into a binomial regression which I then

used for classification plot. I entered the lag1 and lag2 parameters into the ggplot functional

arguments. I also created the linear separation line using the geom_abline() function.

Risk Data Set

31

The decision boundary is much more slanted in the risk data set than the return. It also looks

there are more misclassifications in the risk data set.

Predictions for Stock Risk and Return

The data is split where 240 observations are training and 60 are testing. I will use 240

observations to predict the 60 observations.

I did the same procedure for the risk data but changed the prediction parameter and data rows to

match the risk data.

32

For the Risk data , the logistic regression predictions were correct 111/150 = 74% of the time.

For the returns data, the logistic regression predictions were correct 78/150 = 52% of the time

33

Naïve Bayes

For this section, I am going to use the bayes classifier and predict function for n=300 randomly

selected observations. First, I will use the naiveBayes function to train the data using the first 150

observations. Afterwards, I will use the predict function to classify the other 150 observations

(we can call this the test set).

Return Data Predictions

Forecast is classified 83/150 = 55% correctly

Risk Data Predictions

Forecast is classified 119/150 = 79% correctly

34

Return Data Classification Plot Naïve Bayes

The classification is very unclear since the high return (green) points and the low return (red)

points are clustered together. I’m not sure why the naïve bayes decided to cluster the points

instead of separating them down the diagonal like svm. One conclusion that could be made is if

yesterday’s return (“Lag2ret”) were low than today’s returns would also be low given that there

are more red points on the left side of the graph than the right.

35

Risk Data Classification Plot Naïve Bayes

The Naïve Bayes classification method worked better for the risk data than the return data. We

can see a clear boundary between the low risk and high-risk points here.

-4 -2 0 2 4

-4
-2

0
2

4

Shuvam Bhowmick's Bayes Plot stock risk

Lag2risk

L
a

g
1

ri
s
k

36

CFindustries Return Data (Using training data to classify new data)

SVM

 Predicted

 Low Return

 High Return

Low Return

32

42

 Actual

High Return

33

43

75/150 = 50%

accurate

KNN

53

32

 35

 30

 83/150 = 55% accurate

Logistic Regression

50

35

 37

 28

 78/150 = 52% accurate

Naïve Bayes

73

12

55

10

 83/150 = 55% accurate

** For svm we correctly predicted 32 low return data points, and 43 high return data

points which gives us an accuracy rate of 50%. The other numbers are

misclassifications**

37

CFindustries Risk Data (Using training data to classify new data)

SVM Predicted

 Low Risk

E High Risk

Low Risk

67

17

 Actual

High Risk

18

48

115/150 = 77%

accurate

KNN

69

12

 16

 51

 120/150 = 80% accurate

Logistic Regression

78

15

 24

 33

 111/150 = 74% accurate

Naïve Bayes

69

14

17

50

 79/150 = 79% accurate

** For svm we correctly predicted 67 low risk data points, and 48 high risk data points

which gives us an accuracy rate of 77% **

38

Overall, the returns were harder to forecast/classify compared to the risk of the CFindustries

stock. The data suggests that it is easier to predict risk than it is to predict returns. Some research

has suggested that predicting stock risk may be more difficult because it involves assessing the

potential losses and “volatility”5 of a stock, which can be affected by a wide range of internal and

external factors. On the other hand, predicting stock return may be more straightforward because

it is typically measured by the change in the stock price over a given period, which can be more

easily quantified and modeled. Predicting stock risk and stock returns using classification

methods such as Support Vector Machines (SVM), Naive Bayes, Logistic Regression, and K-

Nearest Neighbors (KNN) involves different approaches and assumptions. SVM and Logistic

Regression are models that can be used for binary classification, where the goal is to predict

whether a stock will have high or low risk or return. On the other hand, Naive Bayes is a

probabilistic model that can be used for multiclass classification, where the goal is to predict the

specific class or category that a stock belongs to based on its risk or return characteristics. KNN

is a non-parametric method that can be used for both binary and multiclass classification, and it

makes predictions based on the similarity of the stock to its nearest neighbors in the feature

space. Overall, the choice of classification method will depend on the specific characteristics of

the stock dataset and the goals of the analysis.

5 Finra.org, https://www.finra.org/investors/investing/investing-basics/risk

https://www.finra.org/investors/investing/investing-basics/risk

39

Appendix :

This Lab in broken up into two parts. In the first part, we will look at the Support Vector

Classifiers and then Support Vector Machines. The concepts in both labs are essential in

understanding the mechanisms behind SVM along with some of its parameters.

PART ONE : SUPPORT VECTOR CLASSIFIERS

I am going to present how to use the svm() function to fit the support vector classifier for a given

value of a cost parameter. We are going to use the function on a two-dimensional example so we

can plot the decision boundary.

First, I will generate observations and then check for a linear separation for the matrix plot.

Looks like the classes for the plot are not linearly separable. For the svm() function to perform

classification , I must encode the response as a factor variable using a dataframe.

-1 0 1 2

-2
-1

0
1

2

Shuvam Bhowmick's Matrix Plot

x[,1]

x[
,2

]

40

The argument scale = FALSE tells the svm function not to scale each feature to have mean zero

or standard deviation one. Depending on preferences, one might prefer scale=TRUE. A cost

argument allows us to specify the cost of a violation to the margin. When the cost argument is

small, then the margins will be wide and many support vectors will be on the margin or will

violate the margin. When the cost argument is large, then the margins will be narrow and there

will be few support vectors on the margin. We want to tune the C parameter so that we reduce

overfitting by allowing some samples inside the margin but not eliminate the large margin

properties that are beneficial for accurate classification. Now we will plot the support vector

classifier obtained :

The two arguments , “svmfit” and

“dat” are the output of the call to svm(), as well as the data used in the call to svm().

 Shuvam Bhowmick’s SVM plot C = 10

-1
1

-1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

o

o

o

o

o

o

o

o

o

o

o

o

o

x

x

x

x

x

xx

SVM classification plot

x.2

x.
1

41

The yellow region is assigned to the feature space of the -1 class while, the red region is assigned

to the feature space +1. The decision boundary between the two classes is linear since we used

the kernel = “linear” parameter in the svmfit function. The first feature is plotted on the y-axis

while the second feature is plotted on the x-axis. Features define the classification characteristics.

The support vectors are plotted as crosses and the remaining observations are plotted as circles.

We can identify the support vectors using the svmfit$index command. There are 7 support

vectors in our plot.

Here is the summary of the svmfit function:

Now we will plot the linear kernel using a cost parameter of 0.1 instead of 10.

42

 Shuvam Bhowmick’s SVM plot C = 0.1

Because we used a smaller value for the cost parameter, we obtain a larger number of support

vectors, since the margin is now wider. The symbols “x” indicates the support vectors. Based on

the index function, there are 16 support vectors instead of 7.

-1
1

-1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

o

o

o

o

x

x

x

x

x

x
x

x

x

x

x

x

xx

x

x

SVM classification plot

x.2

x.
1

43

The e1071 library includes a built-in function, tune(), to perform cross-validation. By default,

tune() performs ten-fold cross-validation. The following arguments in the tune() function refers

to the comparison of SVMs with a linear kernel while using a range of the cost parameter.

We can access the cross-validation errors for each of these models using the summary()

command.

44

We can see that cost = 0.1 results in the lowest cross-validation error rate. The turne() function

stores the best model obtained which we will access with the following command.

The predict() function is used to predict the class label on a set of test observations, at any given

value of the cost parameter. Let’s begin by generating a test data set.

Now, we will predict the class labels of these test observations. We will then use the best model

obtained through cross-validation in order to make predictions.

Based on the bestmod cost value of 0.1, 17 test observations are correctly classified.

Let’s use cost = 0.01 to see what happens.

In this case only 14 were correctly classified which is 3 less than before.

45

Let’s consider a situation in which the classes in our simulated data are linearly separable.

*This Line of code further separates the two classes as

shown in the plot.

Because of the modifications, the plot is somewhat linearly separable.

-1 0 1 2 3

-2
-1

0
1

2
3

Shuvam Bhowmick's Classification Plot

x[,1]

x[
,2

]

46

Now, we fit the support vector classifier and plot the resulting hyperplane, using a very large

value of cost so that no observations are misclassified. The cost argument equal 10^5

Only 3 support vectors were used. Now, let’s plot to see where the support vectors and

observations are located.

47

 Shuvam Bhowmick’s SVM Classification plot C = 10^5

The margins are very narrow since the observations that are not support vectors, indicated as

circles, are very close to the decision boundary. However, not a single training error occurred

here. All the red points are on the red side of the classification while all the black points are on

the yellow side. Let’s see the plot with a smaller value of cost.

-1

1

-1 0 1 2 3

0

1

2

3

o

o

o

o

o

o

o
o

o

o

o

o

oo

o
o

o

x

x

x

SVM classification plot

x.2

x
.1

48

 Shuvam Bhowmick’s SVM plot C = 10^5

Using cost=1, there is one training observation that was misclassified.

The margin here is much wider and we are making use of 7 support vectors. This model will

perform better on test data than the model with cost = 10^5 because of the wider margin and

extra support vectors. Its unfortunate that one observation is misclassified but we have to

introduce some bias to decrease the variance that will occur in the test data predictions.

-1
1

-1 0 1 2 3

0

1

2

3

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

x
x

x

x

x

SVM classification plot

x.2

x
.1

49

PART 2 SUPPORT VECTOR MACHINES

We will continue using the Svm() function to fit data but this time with new arguments. We will

fit an SVM with two different non-linear kernels : polynomial and radial. We will also use the

degree argument to specify a degree for the polynomial kernel. For the radial kernel , we will use

the gamma argument to specify the value of γ (omega) . Degree and Gamma are like the C

parameter in that they adjust the functions of the decision boundary to better separate two classes

in an SVM plot. The two non-linear decision boundary functions are :

1.

 d = degrees

2.

  = Omega

We will begin by generating some data with a non-linear class boundary

-4 -2 0 2 4

-4
-2

0
2

4

Shuvam's radial SVM plot

x[,1]

x[
,2

]

50

Based on the plot, it’s clear that the decision boundary will be non-linear.

The data is randomly split into training and testing groups. We then fit the training data using the

svm() function with a radial kernel and γ = 1

 shuvam’s radial plot with training data

1
2

-2 0 2 4

-2

0

2

4

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo
o

o

o

o

oo

o

o

o
o

o

o

o

o

o

o

o

o
o

x

x

x

x

x

x

x
x

x

x
x

x

x
x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

SVM classification plot

x.2

x.
1

The summary() function can be

used to obtain some information

about the SVM fit:

51

We can see the decision boundary is oval shaped and non-linear. In the plot, we also see a fair

number of training errors. If we increase the value of cost, we can reduce the number of training

errors. However, this comes at a price of a more irregular decision boundary that seems to be at

risk of overfitting the data.

 shuvam’s radial plot with training data

The plot almost looks like artwork! The shape of the decision boundary is much more irregular

compared to the plot with C = 1. However, this plot seems to have less training data errors.

1
2

-2 0 2 4

-2

0

2

4

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

oo

o

o

o
o

o

o

o o

o

o

o

o

o

o

o

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x x

x

x

x

x

x

x

SVM classification plot

x.2

x
.1

52

We can perform cross-validation using tune() to select the best choice of γ and cost for an SVM

with a radial kernel.

Best choice of parameters involves

Cost = 1 and gamma = 2

We can view the test set

predictions for this model by

applying the predict() function to

the data. To do this we subset the

dataframe dat using -train as an

index set.

35% of the

observations are

misclassified

53

Works Cited

1. “History.” CF Industries. https://www.cfindustries.com/who-we-are/history

2. Tumminello, Aurora. “Statistical Models Part II.” Chapter 11 Support Vector Machines.

https://bookdown.org/aurora_tumminello/statistics_lab/support-vector-machines.html

3. Kuhn, Max. “The Caret Package.” 5 Model Training and Tuning, March 27, 2019.

https://topepo.github.io/caret/model-training-and-tuning.html

4. “K-Nearest Neighbors.” k-Nearest Neighbors - Python Tutorial. https://pythonbasics.org/k-

nearest-neighbors/

5. Finra.org, https://www.finra.org/investors/investing/investing-basics/risk

6. James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. “Chapter 9 : Support

Vector Machines.” Essay. In An Introduction to Statistical Learning: With Applications in R.

Boston: Springer, 2021. https://hastie.su.domains/ISLR2/ISLRv2_website.pdf

https://www.cfindustries.com/who-we-are/history
https://bookdown.org/aurora_tumminello/statistics_lab/support-vector-machines.html
https://topepo.github.io/caret/model-training-and-tuning.html
https://pythonbasics.org/k-nearest-neighbors/
https://pythonbasics.org/k-nearest-neighbors/
https://www.finra.org/investors/investing/investing-basics/risk
https://hastie.su.domains/ISLR2/ISLRv2_website.pdf

